
1. Introduction
A new generation of remote Visible to ShortWave InfraRed (VSWIR) imaging spectrometers is beginning to 
make global observations from orbit. These instruments, also known as hyperspectral imagers, measure the 
upwelling spectrum in contiguous channels from ∼400–2,500 nm for each pixel of an image. The VSWIR spec-
tral range is sensitive to diverse Earth surface properties ranging from terrestrial and aquatic ecosystem function, 
to geologic composition, to the condition of snow and ice. Current and forthcoming instruments include the 
National Aeronautics and Space Administration's Earth surface Mineral dust source InvesTigation (EMIT; Green 
et al., 2020) and Surface Biology and Geology mission (SBG; Cawse-Nicholson et al., 2021), along with similar 
European instruments such as DESIS (Alonso et al., 2019), PRISMA (Cogliati et al., 2021), EnMAP (Guanter 
et al., 2015), and CHIME (Nieke & Rast, 2018). Thanks to continual improvements in instrument capabilities, 
data volumes will soon exceed anything in the history of optical/infrared imaging. For example, the SBG mission 
aims to provide global biweekly coverage of Earth's terrestrial and coastal aquatic areas at 30 m spatial sampling. 
Even accounting for non-sunlit areas and cloud cover, this equates to more than a hundred thousand spectra per 
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second continuously over the mission's multi-year lifetime. With finite resources for analysis, we must signifi-
cantly improve the efficiency of ground processing to match this explosion in data volume.

One of the most intensive processing steps is the joint estimation of spectral surface reflectance and atmospheric 
state. This process, colloquially termed “atmospheric correction,” is actually a complex inversion of an atmos-
pheric Radiative Transfer Model (RTM). Current atmospheric correction methods use two steps, both of which 
are computationally challenging. First, analysts execute an RTM many times to fill a lookup table of atmospheric 
parameters, such as transmittance, that influence the radiance at the sensor. Next, each radiance spectrum is 
inverted independently to find the atmospheric parameters which best explain the measurement. Recent studies 
have made considerable progress in accelerating the first step. They have sped lookup table generation by two to 
three orders of magnitude with surrogate models such as neural networks (Brodrick et al., 2021; Bue et al., 2019). 
The radiative transfer models themselves can be accelerated with PCA representations (Liu et al., 2006). However, 
there has been little progress on the inversion step, which is far more computationally-intensive. Efficiency gains 
in the inversion are required to meet the future needs of missions like SBG.

This paper demonstrates that, independent of the inversion algorithm used, a one to two order of magnitude 
speedup is possible based on the simple observation that atmospheric state is locally smooth. VSWIR imaging 
spectrometers oversample atmospheric spatial variability, so it is not necessary to find a separate solution for 
every spectrum. Performing atmospheric inversions over larger spatial footprints can significantly reduce the 
number of computations required without an accuracy penalty. This manuscript presents the first formal treat-
ment and validation of this process, providing a framework for assessing the benefits of spatial aggregation as 
a function of noise level and spatial resolution. We explore approaches for spatially interpolating atmospheric 
solutions that treat surface properties like reflectance and topography at the native resolution of the sensor. We 
then demonstrate feasibility using a field experiment with airborne data. The approach has been adopted by 
NASA's EMIT mission, where it will enable full-physics atmosphere/surface inversions for a large fraction of 
Earth's surface using a single commodity computing cluster. Ultimately, these speed improvements make modern 
inversion algorithms tractable for SBG data volumes.

2. Theoretical Background
We represent the measurement process mathematically using a forward model 𝐴𝐴 𝐅𝐅 , a function which maps a vector 
of free surface and atmosphere parameters 𝐴𝐴 𝐱𝐱 onto the spectral radiance at sensor 𝐴𝐴 𝐋𝐋𝑜𝑜𝑜𝑜𝑜𝑜 . Radiative transfer theory 
provides the following parameterization (Vermote et al., 1997):

𝐋𝐋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐅𝐅(𝒙𝒙) = 𝐋𝐋𝑎𝑎 +
𝐋𝐋↓

1 − 𝐬𝐬◦𝝆𝝆
𝑜𝑜

◦

[

𝐭𝐭
↑

𝑑𝑑𝑑𝑑𝑑𝑑
◦𝝆𝝆

𝑜𝑜
+ 𝐭𝐭

↑

𝑑𝑑𝑑𝑑𝑑𝑑
◦𝝆𝝆

𝑜𝑜

]

 (1)

where 𝐴𝐴 𝐋𝐋𝑎𝑎 is the path radiance, photons that scatter from atmospheric particles or molecules and never interact 
with the surface. Boldface symbols are vector-valued spectral quantities. The symbol ◦ signifies an element-wise 
(Hadamard) product in which each entry of the first factor is multiplied by its corresponding entry in the second 
factor to produce a vector-valued result. The horizontal line signifies an element-wise division. We ascribe each 
pixel a hemispherical-directional reflectance of 𝐴𝐴 𝐴𝐴s , and the background surrounding the pixel an average reflec-
tance spectrum 𝐴𝐴 𝐴𝐴b . The upward transmittance from the ground to the sensor is the sum of diffuse and direct 
components, written 𝐴𝐴 𝐭𝐭

↑

𝑑𝑑𝑑𝑑𝑑𝑑
 and 𝐴𝐴 𝐭𝐭

↑

𝑑𝑑𝑑𝑑𝑑𝑑
 respectively. The variable s represents the spherical sky albedo. The radiance 

due to downwelling illumination at the surface, written 𝐴𝐴 𝐋𝐋↓ , decomposes via:

𝐋𝐋↓ = 𝐄𝐄𝜋𝜋
−1

(

cos𝜙𝜙 𝐭𝐭
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)

 (2)

Division by 𝐴𝐴 𝐴𝐴 converts the extraterrestrial solar irradiance 𝐴𝐴 𝐄𝐄 to an angular quantity. The total transmittance from 

the sun to ground is the sum of diffuse downwelling transmittance 𝐴𝐴 𝐭𝐭
↓

𝑑𝑑𝑑𝑑𝑑𝑑
 and direct downwelling transmittance 𝐴𝐴 𝐭𝐭

↓

𝑑𝑑𝑑𝑑𝑑𝑑
 . 

Here 𝐴𝐴 𝐴𝐴 represents the solar zenith angle at the top of atmosphere, while 𝐴𝐴 𝐴𝐴 is the angle of incidence onto the terrain 
facet, relative to the surface normal direction. This can be calculated by (Civco, 1989):

cos(𝜙𝜙) = cos 𝜃𝜃cos 𝛼𝛼 + sin 𝜃𝜃sin 𝛼𝛼cos(𝛾𝛾 − 𝛽𝛽) (3)
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where 𝐴𝐴 𝐴𝐴 is the slope angle, 𝐴𝐴 𝐴𝐴 is the solar azimuth and 𝐴𝐴 𝐴𝐴 is the terrain aspect angle. Alternatively, 𝐴𝐴 cos (𝜙𝜙) can be 
calculated as the dot product between the surface normal and the direction to the sun. If the terrain is flat, 𝐴𝐴 𝐴𝐴 = 𝜃𝜃 . 
The observation process generates a measured spectrum 𝐴𝐴 𝐲𝐲 according to:

𝐲𝐲 = 𝐅𝐅(𝐱𝐱) + 𝜖𝜖 f𝑜𝑜𝑜𝑜 𝜖𝜖 ∼ 𝐍𝐍 (0,𝐒𝐒𝑒𝑒) (4)

where 𝐴𝐴 𝐴𝐴 is a zero mean random variable representing Gaussian measurement noise with covariance 𝐴𝐴 𝐒𝐒𝑒𝑒 . This 
covariance can also be used to bookkeep other random discrepancies between the forward model and reality, 
such as calibration or atmospheric modeling errors that prevent the model 𝐴𝐴 𝐅𝐅(𝐱𝐱) from matching the measurement 
(Thompson et al., 2021).

Surface reflectance estimation involves using the measured radiance spectrum y to estimate the state vector 𝐴𝐴 𝐱𝐱 
(Thompson, Guanter, et al., 2019). The designer has discretion about how to parameterize 𝐴𝐴 𝐅𝐅(𝐱𝐱) . For these exper-
iments, we will follow the common convention of estimating the surface reflectance in each of 𝐴𝐴 n channels, along 
with two atmospheric parameters: the column water vapor concentration and aerosol optical depth at 550 nm. 
These are the temporally variable quantities with the largest effect on the observed radiance spectrum (Thompson 
et al., 2018). All optical coefficients in Equation 1 are calculated with sRTMnet (Brodrick et al., 2021), a neural 
network emulator for the MODTRAN 6.0 RTM (Berk & Hawes,  2017). During the training, we configure 
MODTRAN to use a fine 0.1 cm −1 band model. This high spectral resolution is a good approximation for Equa-
tion 1 that describes monochromatic light. Note that the resulting inversion problem is ill-posed since we aim to 
estimate 𝐴𝐴 n + 2 parameters using only 𝐴𝐴 n radiance channel measurements.

Constraints on the reflectance spectrum can make the problem tractable by reducing the effective number of free 
parameters. Sequential methods make assumptions about the surface reflectance to measure the atmosphere, and 
then use this measured atmosphere to re-estimate the surface terms. For example, assuming the reflectance is 
linear across absorption features enables a direct measurement of water vapor concentrations (Gao et al., 1993; 
Schläpfer et al., 1998). Similarly, terrain-specific band ratios can be used to estimate atmospheric aerosols (Hsu 
et  al.,  2013). After estimating these atmospheric state variables, the remaining 𝐴𝐴 n reflectance parameters can 
then be found via direct algebraic inversion. Such sequential solutions are fast, but the estimated reflectance is 
not generally consistent with the assumptions used in the atmospheric retrieval. Recently, full physics inversion 
strategies have been developed which attempt to solve all parameters of the physical observation model at once by 
applying some other background information to reduce the effective number of degrees of freedom. For example, 
one can constrain the retrieval using prior distributions over state vector parameters (Thompson et al., 2018). 
Since the inverse problem is nearly well-posed, very loose prior covariances in specific spectral intervals - such 
as atmospheric absorption features—are sufficient to make it invertible (Thompson et al., 2020). This leads natu-
rally to a fully-consistent solution based on Maximum A Posteriori (MAP) inference (Rodgers, 2000). The best 

𝐴𝐴 𝐱𝐱 maximizes the posterior probability of the state vector given the measurement, constrained by a Gaussian prior 
distribution with mean 𝐴𝐴 𝐱𝐱𝑝𝑝 and covariance 𝐴𝐴 𝐒𝐒𝐩𝐩 . One finds it by minimizing the cost function,

(𝐱𝐱) = (𝐅𝐅(𝐱𝐱) − 𝐲𝐲)
𝑇𝑇
𝐒𝐒
−1
𝐞𝐞 (𝐅𝐅(𝐱𝐱) − 𝐲𝐲) +

(

𝐱𝐱 − 𝐱𝐱𝐩𝐩

)𝑇𝑇

𝐒𝐒
−1
𝐩𝐩

(

𝐱𝐱 − 𝐱𝐱𝐩𝐩

)

 (5)

with a nonlinear optimization such as gradient descent. After finding a full physics solution, one can calculate 
a closed-form estimate of posterior uncertainties by linearizing the forward model 𝐴𝐴 𝐅𝐅(𝐱𝐱) at the solution state. We 
define the Jacobian matrix 𝐴𝐴 𝐊𝐊 as the matrix of partial derivatives of 𝐴𝐴 𝐅𝐅(𝐱𝐱) with respect to 𝐴𝐴 𝐱𝐱 . The posterior uncer-

tainty 𝐴𝐴 �̂�𝐒 is (Rodgers, 2000):

�̂�𝐒 =
(

𝐊𝐊
𝑇𝑇
𝐒𝐒
−1
𝐞𝐞 𝐊𝐊 + 𝐒𝐒

−1
𝐩𝐩

)−1 (6)

Other Bayesian inference algorithms go beyond MAP estimation to characterize the full posterior distribution 
over atmosphere and surface states. These include MCMC approaches like those described in Thompson, Babu, 
et al. (2019). Regardless of the precise inversion approach used, we will refer to these solutions as full physics 
algorithms because they attempt an exact, statistically optimal inversion of the physics-based radiative transfer 
model.

Full physics inversions combine principled physical modeling with statistical rigor and uncertainty propagation, 
making them the favored approach for spectroscopic sounders like OCO-2 (O’Dell et al., 2012). However, such 
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approaches are still rare for imaging spectrometers due to their large data volumes—in SBG's case, hundreds 
of thousands of spectra per second, on average, over the mission. Iterative solutions for Equation 5 are gener-
ally too slow to keep pace with such data rates. At the time of this writing, implementations require one to 
five core-seconds per spectrum on modern hardware, and MCMC algorithms are far slower. Such speeds imply 
significantly larger computing costs than traditional missions. Once hardware and software optimizations are 
exhausted, how can iterative atmospheric correction be made tractable for a future mission like EMIT or SBG?

Here we present a solution based on the simple observation that imaging spectrometers oversample the 
spatially-smooth atmosphere. Orbital imaging spectrometer ground sampling is on the order of 30 m. In contrast, 
water vapor concentrations are effectively constant over 100 m scales, and have only 3%–5% variability over 
kilometer scales (Thompson et al., 2021). Outside anomalous conditions like wildfires (Brodrick et al., 2022), the 
spatial scales of aerosols are even larger, on the order of tens of kilometers for optical depth (Anderson et al., 2003). 
Consequently, for a local neighborhood of pixels at similar elevation, the atmosphere can be considered constant. 
All the terms in Equation 1 except ρs can be held fixed. Under these conditions we can replace  expression 1 with 
the much simpler model F′(ρs), which is a function of surface reflectance alone,

𝐋𝐋𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐅𝐅
′
(

𝝆𝝆
𝑜𝑜

)

= 𝐚𝐚 + (𝐛𝐛 cos 𝜃𝜃 + 𝐜𝐜 cos𝜙𝜙)◦𝝆𝝆
𝑜𝑜 (7)

for three vector-valued free parameters 𝐴𝐴 𝐚𝐚 , 𝐴𝐴 𝐛𝐛 and 𝐴𝐴 𝐜𝐜 . These parameters can be fit with ordinary least squares using 

any three reflectance/radiance pairs, producing local coefficients 𝐴𝐴 �̂�𝐚, �̂�𝐛 and 𝐴𝐴 �̂�𝐜 . Following statistics convention, 
the hat symbol ˆ indicates that these values are estimated from data. The resulting linear forward model can be 
inverted directly to solve 𝐴𝐴 𝝆𝝆

𝒔𝒔
 for each pixel in the neighborhood:

�̂�𝝆
𝑠𝑠
=

𝐋𝐋𝑜𝑜𝑜𝑜𝑠𝑠 − �̂�𝐚

�̂�𝐛cos 𝜃𝜃 + �̂�𝐜cos𝜙𝜙
 (8)

If the terrain is locally flat, then 𝐴𝐴 𝐴𝐴 = 𝜙𝜙 , and the forward model can be further simplified:

���� = �′(��
)

= � + �◦�� (9)

This approach forms the basis of the so-called empirical line solutions (Smith & Milton, 1999), which fit 𝐴𝐴 𝐚𝐚 and 
𝐴𝐴 𝐛𝐛 using two or more paired spectra of remote radiance and field reflectance data. The corresponding inverse 

relationship is:

�̂�𝝆
𝑠𝑠
=

(𝐋𝐋𝑜𝑜𝑜𝑜𝑠𝑠 − �̂�𝐚)

�̂�𝐛
 (10)

This insight can be used to speed up full physics atmospheric correction. The strategy, first proposed in the appen-
dix of Thompson et al. (2020), performs a sparse set of full physics solutions within a small geographic area. 
The resulting radiance and reflectance pairs are used to fit a and b via ordinary least squares. This is tantamount 
to training a local linear emulator (Servera et al., 2021; Vicent et al., 2018) for the forward model which can be 
inverted algebraically. The model is only valid over short distances and flat terrain, where the atmospheric opti-
cal properties are uniform, so an acquisition might require thousands of local linear emulators to tile the scene. 
However, training and inverting these linear models can enable speedups of one to two orders of magnitude vis a 
vis inverting each pixel independently.

There are many ways one could implement this basic strategy. In the experiments that follow, we will use a refer-
ence implementation from the open source ISOFIT codebase (ISOFIT, 2021). It first pre-segments the image into 
small contiguous groups with a superpixel segmentation algorithm, and then performs a full-physics inversion on 
the average spectrum of each group. Figure 1 shows the sequence of operations:

1.  Calibrate the instrument data to produce a radiance image, then georectify and project it onto a rectilinear grid 
using nearest neighbor interpolation.

2.  Segment the radiance image into small regions. Our reference implementation uses the SLIC algorithm 
(Achanta et al., 2012) operating on the first five principal components of the radiance spectra, with segments 
that contain approximately 40 native pixels per superpixel.
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3.  Perform a full physics inversion on the average spectrum from each superpixel, estimating the surface and 
atmospheric state of Equation 1 by minimizing Equation 5. In our reference implementation the surface is 
taken to be flat, meaning that 𝐴𝐴 𝐴𝐴 = 𝜃𝜃 in Equation 3. This step yields a paired reflectance and radiance spectrum 
for each superpixel.

4.  Form local emulators for each superpixel by using a collection of the 𝐴𝐴 𝐴𝐴 nearest radiance/reflectance pairs to 
fit the 𝐴𝐴 �̂�𝒂 and 𝐴𝐴 �̂�𝒃 coefficients of Equation 9. Our reference implementation fits these coefficients using ordinary 
least squares with radiance/reflectance pairs from the 400 nearest superpixels, a number which can be changed 
to modify the spatial neighborhood of the model.

5.  Apply the associated emulator to the pixels inside each superpixel, predicting the reflectance at native reso-
lution using Equation 10.

This procedure works well because the terrain in the field experiments is mostly flat. In very rough terrain the 
full physics inversion takes local slope into account by adjusting 𝐴𝐴 𝐴𝐴 in Equation 2. In this case the three-parameter 
emulator of Equations 7 and 8 would be used.

Uncertainty quantification for the linear emulator is different than the full physics retrieval. There are several 
kinds of error to consider in Equation 10. First, the radiance measurement 𝐴𝐴 𝐋𝐋𝑜𝑜𝑜𝑜𝑜𝑜 may contain both systematic errors 
such as calibration drift and random errors such as instrument noise, which are all captured by the measurement 
noise covariance 𝐴𝐴 𝐒𝐒𝑒𝑒 . Second, the 𝐴𝐴 𝐚𝐚 and 𝐴𝐴 𝐛𝐛 coefficients might accrue errors from the component radiances and 
reflectances used to estimate them. We represent these errors using covariance matrices 𝐴𝐴 𝐒𝐒a and 𝐴𝐴 𝐒𝐒b , respectively. 
We then linearize the forward model via first order Taylor expansion to approximate the resulting error in the 
estimated reflectance (JCGM, 2008). With the reasonable assumption that the underlying value of 𝐴𝐴 𝐴𝐴 is fixed, the 
reflectance estimation error is zero mean with the covariance:

�̂′ ≈
(

��� ◦��
)

+
(

��� ◦��
)

+
(

��� ◦��
)

for � = 1
�̂

and � =
� − �̂
�̂◦̂�

 (11)

We estimate 𝐴𝐴 𝐒𝐒a and 𝐴𝐴 𝐒𝐒b with the bootstrap method. Specifically, we fit 𝐴𝐴 𝐚𝐚 and 𝐴𝐴 𝐛𝐛 many times by sampling random sets 
of the training datapoints used to construct the emulator, sampling with replacement from the original training 
set. We then calculate the sample covariance of inferred coefficients. This provides all the necessary terms to 
evaluate Equation 11. The resulting covariance accounts for the random noise in the target radiance, the measure-
ment noise in the coefficient training sets, and finite sample sizes used to estimate those coefficients. Note that 
the posterior uncertainty in surface reflectance from Equation 11 is strictly larger than the pixelwise posterior in 
Equation 6. This is the case because the 𝐴𝐴 (𝐝𝐝𝐝𝐝T

◦𝐒𝐒𝐞𝐞) term in Equation 11 is tantamount to the 𝐴𝐴
(

𝐊𝐊
𝑇𝑇
𝐒𝐒
−1
𝐞𝐞 𝐊𝐊

)−1 form in 
Equation 6, selecting the submatrix of surface reflectance state vector elements. In the full physics algorithm, this 
uncertainty can only shrink due to information provided by a prior. In the emulator case, the uncertainty can only 
grow due to the additional errors in estimating 𝐴𝐴 �̂�𝐚 and 𝐴𝐴 �̂�𝐛 .

This raises the question: how significant are coefficient uncertainties for actual imaging spectroscopy retrievals? 
At the time of this writing, there is substantial anecdotal evidence that linear emulator approaches perform well. 

Figure 1. Spatial segmentation process (a) The initial image (b) The image is segmented into small regions (c) The average radiance spectrum of each region is 
inverted using the full physics retrieval algorithm (d) Local models are constructed using a neighborhood of radiance/reflectance pairs (e) Local models are applied to 
each pixel to predict reflectance at native resolution.

D. Build Local Linear ModelsB. Segmentation C. InversionA. Original Image E . Pixelwise Linear Inversion
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However, they rely on the continuity of local atmospheric fields, an assumption that has not been rigorously tested 
with ground truth data. If the atmosphere within a scene were always perfectly uniform, a single atmospheric 
solution would be sufficient. If the atmosphere were spatially uncorrelated, a new solution would be required at 
every pixel. Reality lies somewhere between; as the neighborhood of analysis increases, oversmoothing intro-
duces additional uncertainty in 𝐴𝐴 �̂�𝐚 and 𝐴𝐴 �̂�𝐛 , and errors begin to accrue in the estimated surface reflectance. Thus, the 
local smoothness of atmospheric aerosols, water vapor, and elevation, and the tolerance for approximation error, 
determine computational requirements for the SBG mission atmospheric correction.

Previous studies have measured these lengthscales for different atmospheric constituents. One must interpret 
these results with care, since concentrations have a complex fractal structure with different gradient magnitudes at 
different distances. Moreover, lengthscales may vary across different atmospheric conditions, meaning previous 
studies do not definitively predict future conditions. However, they illustrate the range of possibilities and provide 
a starting point for performance expectations. Table 1 shows several such studies. The most prominently absorb-
ing atmospheric trace gas is water vapor, which can vary by 3%–5% over kilometers in flat terrain (Thompson 
et al., 2021). Water vapor has many broad features across the VSWIR range, so small changes in concentration are 
detectable. Maps of water vapor with contemporary VSWIR instruments show variability over scales down to a 
few hundreds of meters, corresponding to changes of 0.1 g cm −2. Kilometer-scale gradients have been attributed 
to evapotranspiration over vegetated areas (Ogunjemiyo et al., 2002). Even steeper gradients are found at rare 
isolated anthropogenic point sources (Thorpe et al., 2017). Surface elevation changes can also induce some gradi-
ents in the total observed absorption because water vapor is concentrated in the lower troposphere. Absorption by 
gases like CH4 and CO2 is more constant (Li et al., 2022; Lin et al., 2004). Their background variability does not 
generally exceed 1%, a difference that is virtually undetectable by VSWIR instruments. Again, larger enhance-
ments are observed at rare point sources (Thorpe et al., 2017). Outside of trace gases, aerosol particles can also 
affect VSWIR measurements through absorption and scattering. Changes in background Aerosol Optical Depth 
(AOD) are gradual enough to be detectable only over tens of kilometers (Anderson et al., 2003). Much stronger 
spatial gradients are observed from rare, strong emitters like wildfires (Brodrick et al., 2022).

Our existing knowledge of atmospheric lengthscales is thus a complicated story. But if one ignores rare local-
ized sources that should not impact operational atmospheric correction, then a consistent picture emerges. Most 
constituents can be considered effectively constant over scales of multiple kilometers in flat terrain. Water vapor 
appears most likely to set the minimum neighborhood for VSWIR atmospheric correction, but it is still highly 
overdetermined for orbital instruments with 30–60 m ground sampling. We hypothesize that, for the purposes 
of surface reflectance retrieval, there is a neighborhood within 100 m and 1 km in which the atmosphere can be 

Gradient Reference Detection limit

Background constituent

 Precipitable H2O 0.1 g cm −2 km −1 (Thompson et al., 2021) 0.1–1 km

 C2O column average 0.01 ppm km −1 (Lin et al., 2004) >1 km

 CH4 column average <0.1 ppb km −1 (Li et al., 2022) >1 km

 AOD (550 nm) >0.01 km −1 (Anderson et al., 2003) >1 km

Enhancement source

 Anthropogenic H2O 10,000 ppm m km −1 (Thorpe et al., 2017) <0.01 km

 H2O evapotranspiration 0.02 cm km −1 (Ogunjemiyo et al., 2002) 0.1–1 km

 Anthropogenic C2O >10,000 ppm m km −1 (Thorpe et al., 2017) <0.01 km

 Anthropogenic CH4 >10,000 ppm m km −1 (Thorpe et al., 2017) <0.01 km

 Wildfire, AOD at 550 nm >1 km −1 (Brodrick et al., 2022) <0.1 km

Note. Units of absorption for point source emitters are in concentration lengths of ppm m. All values are rough orders of 
magnitude, and assume flat terrain. Detection limits show the minimum distance at which the gradient is detectable in a 
single pixel by an instrument with sensitivity similar to AVIRIS-NG. The top table shows expected background variability, 
while the bottom shows the stronger gradients occasionally observed around rare sources.

Table 1 
Lengthscales of Different Atmospheric Parameters
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considered effectively constant. The next section describes an approach to test this hypothesis with field data. 
Section 4 shows experimental results. Section 5 then discusses the implications and describes how the result 
might be extended to scenes with mountainous terrain.

3. Experimental Approach
Here we describe a series of field experiments to validate the proposed retrieval approach. These experiments 
compare both single-pixel and emulator solutions against each other and with field reflectance data for a pair 
of coastal imaging spectrometer overflights. We characterize the tradeoff of speed versus accuracy, charting the 
approximation error as a function of the training neighborhood size. Our experiments use data from NASA's 
Airborne Visible Infrared Imaging Spectrometer (AVIRIS-NG). AVIRIS-NG is an airborne imaging spectrometer 
that measures the solar-reflected regime from 380 to 2,500 nm at approximately 5 nm sampling. Here it acquired 
data over two distinct coastal environments and atmospheric conditions. The first was a section of the south-
ern California coastline, the Salt Creek and Aliso beaches north of Dana Point, California (AVIRIS-NG flight-
line ang20211012t181608), which it overflew at approximately 1,000 m above ground level to achieve spatial 
sampling of 1.0 m. The scene contained diverse content, including buildings, vegetated terrain, bare soil, sandy 
beach, and ocean. The second was a section of the Achafalaya river delta, Louisiana (ang20210402t195922), 
overflown at 4,700 m above ground level for a spatial resolution of 4.7 m. This scene was more spatially homo-
geneous, with low terrain and turbid water. Conditions were clear on both overflights, without significant cloud 
cover. The overflights each contained over 5 million spectra.

After acquisition, we analyzed the data using established best practice methods. We first calibrated the instrument 
digital numbers to radiance units using the approach described in Chapman et al. (2019). We then adjusted the 
laboratory radiometric calibration using a vicarious reference surface in the Louisiana data set, separate from the 
ground truth locations we evaluated. This approach, detailed in Bruegge et al. (2021), compensated for minor 
discrepancies in instrument sampling and response levels too subtle to estimate under synthetic laboratory illu-
mination. These radiometric adjustments were 1% or less in most channels. We next orthorectified the data based 
on a geometric camera model and data from an onboard Global Positioning System/Inertial Measurement Unit 
(GPS/IMU). We geolocated each pixel independently by tracing its field of view as a ray from the aircraft position 
to a Digital Elevation Model (DEM).

Ground teams measured selected locations within both flightlines. These were uniform surfaces located as far as 
possible from other large scattering objects like trees and buildings. To reduce errors due to geographic misreg-
istration, or multiple scattering from objects like trees and buildings we selected flat homogeneous surfaces. We 
minimized unmodeled BRDF effects by measuring these surfaces within 2 hours of the overflight. For the Cali-
fornia overflight, we selected a synthetic basketball court surface and a well-tended lawn. We measured an area of 
approximately 4 m in diameter using an ASD Fieldspec Pro field spectrometer. A standardized reflectance panel 
was placed nearby on a tripod and set orthogonal to the gravity vector with a bubble level. The surface reflectance 
was calculated as the ratio of field spectrometer DNs from the surface to the panel, further dividing out the known 
panel reflectance to determine the hemispherical directional reflectance of the surface. Images of the California 
location, and the corresponding positions within the flightline, appear in Figure 2.

During the Louisiana overflight, a field team measured water-leaving reflectance spectra at several stations using 
a boat-deployed spectroradiometer manufactured by Spectral Evolution (PSR-1100f). These measurements were 
combined with the estimated fraction of skylight reflected at the air-sea interface to calculate the water-leaving 
reflectance corrected for specular reflection of skylight at the air-water interface (Mobley, 1999, 2015). The team 
made three near-simultaneous measurements: the water surface, 40° from nadir and 135° from the sun azimuthal 
plane; the sky, 40° from zenith and 135° from the sun azimuthal plane; and a highly reflective reference panel. 
These specific angles avoided sunglint, while also minimizing variability of skylight reflectance at the air-water 
interface to simplify its prediction from wind speed (Mobley, 1999, 2015). The procedure was repeated multiple 
times and the median of each set was used. The method of Jiang et al. (2020) was used for sunglint removal. Six 
stations were measured, but only station five had temporal alignment with the overflight, so we selected this 
location for the study. Images of the Louisiana scene from airborne and surface perspectives appear in Figure 3.

We used two alternative approaches to estimate surface reflectance. Our first retrieval was a full physics solution 
with no potential for spatial interpolation error. We extracted a group of pixels at each measurement site and 
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averaged them to form a single radiance spectrum. We then inverted this spectrum using the MAP estimation 
approach. We performed the inversion using the ISOFIT codebase (ISOFIT, 2021), with an uninformed prior 
over atmospheric state vector elements, and a conservatively loose prior over surfaces that constrained only water 
absorption windows as in Thompson et al. (2020). We calculated the instrument noise covariance Se as the sum 
of several different error sources: (a) the AVIRIS-NG instrument model including constant dark and read noise 
terms, as well as the signal-dependent photon shot noise in each channel; (b) a 1% radiometric calibration error 
in every channel, as in Thompson et al. (2018); and (c) a small systematic error term corresponding to discrep-
ancies in the radiative transfer model, as in Thompson et al. (2018). We calculated error predictions using Equa-
tion 6, accounting for the root-n reduction in random noise due to averaging multiple radiance spectra. We then 
compared the result to the in situ measurements using an additional uncertainty of 1% absolute calibration error 
for the in situ instrument, and 1% uncertainty in the spectralon BRDF. All uncertainties were added in quadrature, 
and the resulting posterior error predictions compared against the observed differences between measurements.

We performed similar retrievals using the linear emulator. We segmented the entire radiance cube using the SLIC 
algorithm to create contiguous, homogeneous 40-pixel fragments. Then, we inverted the average radiance spec-
trum of each fragment using the full physics solution. Finally, we calculated the reflectance at native resolution 
by fitting local linear emulators and then solving for each pixel's reflectance using Equation 10. Together, these 
measures reduced the number of integrations required to process the flightline by a factor of 40 vis a vis the pixel-
wise approach. Four hundred neighbor fragments trained each model, corresponding to square neighborhoods 
with widths of approximately 125 and 600 m for the California and Louisiana datasets, respectively. After calcu-
lating the reflectances for each pixel, we extracted and averaged the reflectances in the spatial footprint of each 
ground measurement site. This second reflectance might contain interpolation errors if the local emulators were 

Figure 2. Locations for the California validation site, a complex environment imaged at 1.0 m spatial sampling. Inset images 
show the ground perspective of each validation surface.

Lawn

Basketball Court

ang20211012t181608

100 m

Figure 3. A segment of the Louisiana scene, a simpler environment imaged at 4.7 m spatial sampling.

Station Five

ang20210402t195922

500 m
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inaccurate. To quantify this additional uncertainty, we estimated the covariances Sa and Sb using bootstrap esti-
mation and computed calculated posterior errors for each spectrum using Equation 11, accounting for the root-n 
noise reductions from averaging multiple reflectances. We compared the result to field data with the additional 
in situ instrument error terms described above. As before, our Se matrix included calibration, model discrepancy, 
and instrument noise terms.

A final experiment aimed to quantify the tradeoff between accuracy and spatial scale. We varied the radius 
over which the linear model was trained, and calculated the differences in the final reflectance maps. We used 
neighborhood window diameters of 25, 50, 100, 200, and 400 base pixels. This translated to ground distances of 
25–400 m in the California flightline, and 117–1,880 m in the Louisiana flightline. We calculated the root mean 
square differences across all locations and channels, and plotted the differences as a function of interpolation 
radius.

4. Experimental Results
Figure 4 shows the measured radiances at all three sites. The overall profile and magnitudes are similar to the 
solar irradiance, with water vapor features visible at 940 and 1,140 nm. The right column shows the a and b coef-
ficients for all wavelengths at each of the three sites. These coefficients reveal the physical processes captured by 
the emulators. The black curves show b, which is the gain or change in radiance with respect to some unit change 
in reflectance. This appears, appropriately, as the reflected solar irradiance profile, attenuated by atmospheric 
gas absorption and particle scattering. The red spectrum is the a coefficient which is independent of surface 
reflectance. It represents path radiance due to particle scattering, that is, photons that do not interact with the 
surface. We observe some spectral structure in a coefficients near water absorption features at 940 and 1,140 nm. 
Additive path radiance from particle or molecular scattering should vary smoothly with wavelength, so this 
structure is probably caused by measurement error like detector nonlinearity, instrument stray light, or erroneous 
assumptions about aerosol optical properties. In any case this effect is quite small relative to the overall radiance. 
The lawn and basketball court sites have nearly identical coefficients, which is expected since these spectra were 
observed under similar elevation and atmospheric conditions. The station five spectrum is distinct, with a signif-
icantly higher additive term a indicating a greater proportion of the signal at sensor from atmospheric scattering. 
This is expected due to the hazier conditions and higher aircraft elevations of this overflight.

Figure 5 compares the retrieval results. At all three sites, the full physics and emulator methods produce effec-
tively identical reflectance estimates. Moreover, the remote and in situ measurements are similar, validating the 
accuracy of the remote inversion approach. The right column shows the discrepancy between the remote and 
in situ measurements of surface reflectance. These discrepancies lie within the 95% confidence interval of our 
predicted uncertainties. Possible sources of unmodeled error at the terrestrial sites include terrain and BRDF 
effects as well as calibration and atmospheric scattering uncertainty. Likely error sources at the aquatic site 
include sky glint, other surface effects, and atmospheric scattering.

We use a chi-square test to assess the statistical consistency of realized errors with the predicted uncertainties. 
Specifically, we posit a null hypothesis that the differences are drawn from the Gaussian distribution associated 
with our error budget. We treat errors in each channel as independent, conservatively double-counting the corre-
lated errors in adjacent channels. We compare the sum of squared errors to the appropriate chi-square distribution 
with n−1 degrees of freedom. Table 2 shows the resulting p-values to reject the null hypothesis for each site and 
retrieval approach. The values near unity signify that the observed discrepancies do not exceed the sum of squared 
errors expected by a random draw from the predicted error distribution. In other words, the uncertainty budgets 
fully explain the differences in our measurements. This might not be the case for environments that violated the 
forward modeling assumptions, such as topographically complex terrain with cast shadows or multiple scattering 
between terrain facets. Table 2 also shows the Root Mean Squared Error (RMSE) values between remote and in 
situ measurements, demonstrating that the different retrieval approaches provide similar accuracy at all field sites. 
The remote retrievals and in situ data match within approximately 1.1% in reflectance units.

Bootstrap error analysis provides more insight into the emulator-induced uncertainty. Figure 6 shows the bootstrap 
distribution of 𝐴𝐴 𝐚𝐚 coefficients from the lawn spectrum. The left panel shows the estimated values of 𝐴𝐴 𝐚𝐚  at a reference 
wavelength of 877 nm for 10,000 trials. The right panel shows a similar comparison for the 𝐴𝐴 𝐛𝐛 coefficient. The 
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distribution is nearly Gaussian and highly compact with less than 0.1% variance, signifying that the number of 
neighbors used in our tests was sufficient to estimate the gain for this wavelength with high accuracy.

Finally, we assess how the reflectance solution changes across different neighborhood sizes. Figure  7 plots 
the root mean squared differences in the reflectance cubes for different spatial neighborhoods, compared to 
the reflectances obtained using a 25 pixel window size. As the neighborhood sizes grow, the differences in 
retrieved  reflectance also increase. At one km scales, the changes induced by atmospheric smoothing are approx-
imately 0.15% for the Louisiana scene, and 0.25% for the California scene. We find that the differences lie almost 
perfectly along a logarithmic curve, ν1 + ν2 log d for distance d in meters. The corresponding decay curves are 
−0.0011 + 0.00052 log d for the California data set, and −0.0011 + 0.00034 log d for the Louisiana data set. Using 
the California data set as a stressing case of a complex surface and atmosphere, one can calculate the neighbor-
hood distance to use which bounds the expected error to a desired level. The relationship is:

Figure 4. Measurement of the three sites. The rows show the lawn, basketball court, and station five (aquatic) site, respectively. The left column shows radiance at 
sensor. The right shows additive and multiplicative (a) and (b) coefficients by wavelength.
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𝑑𝑑 = exp(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 0.0011)∕0.00052 (12)

This estimate is probably conservative for flat terrain because the differences between neighborhood scales are 
not necessarily errors. Larger neighborhood sizes have the benefits of averaging over surface-induced anomalies 
and measurement noise. On the other hand, variability could be greater along steep topographic gradients that 
induce rapid changes in the atmospheric column. We will discuss some compensatory strategies in the following 
section.

Figure 5. Retrieved reflectances from the three sites. The rows show the lawn, basketball court, and station five (aquatic) site, respectively. The left column shows the 
estimated surface reflectance with in situ measurements in black, remote single-pixel retrievals in blue, and remote spatially-interpolated retrievals in red. At all three 
sites, blue and red overlay each other and are visually indistinguishable. The right column shows surface reflectance discrepancy comparing the remote and in situ 
measurements. Blue and red dotted lines show the 95% confidence interval where errors are expected to lie for the single-pixel and spatially-interpolated retrievals, 
respectively.
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5. Discussion and Conclusions
The field experiments demonstrate that local linear emulators, which exploit 
the spatial smoothness of atmospheric fields, are an accurate, computation-
ally efficient solution to atmospheric correction at scale. Their implementa-
tion is straightforward, and they can be used with any inversion algorithm. 
They are capable of seamlessly incorporating topography whenever the full 
physics inversion uses this information. The result is a one to two order of 
magnitude improvement in computational efficiency for atmosphere/surface 
inversions. In these airborne demonstrations, atmospheric correction accura-
cies align well with in situ measurements, with discrepancies that are consist-
ent with first-principles error budgets. For neighborhood sizes on the 200 m 
scale over flat terrain, local linear emulator solutions are effectively indistin-
guishable from the full physics solution. As neighborhood sizes grow beyond 
1,000 m, differences become measurable, but are still an order of magnitude 
below other model uncertainties. These results are consistent with prior stud-
ies (Thompson et al., 2021) that show measurable differences in atmospheric 
water vapor on these scales.

Our experiments aimed to quantify error induced by the linear emulators, presupposing that emulation would hurt 
accuracy relative to the pixelwise approach if it failed to capture small-scale variability in atmospheric parameters. 
Indeed, some of our experiments were consistent with a very small amount of atmospheric oversmoothing—we 
could measure reflectance differences of approximately 0.2% from emulators trained with different neighborhood 
sizes. However, when ground reference data was introduced, we were unable to measure any degradation in 
performance for even fairly large (>500 m) neighborhoods. In all such comparisons, the emulator and full-physics 
retrievals were identical to within a small fraction of the reflectance. Minor differences were just as likely to 
improve as reduce agreement with the in situ data, and all differences were at a level much smaller than the 
systematic differences between remote and in situ data. The surprisingly good performance led us to ask whether, 
even as it risks atmospheric oversmoothing, the emulator might actually be improving accuracy in other aspects. 
There are several ways that this could occur. First, the spectral averaging of multiple radiance pixels within each 
segment reduces instrument noise, enabling more accurate atmospheric estimation in the full physics retrievals 
that comprise the training data. For example, very high SNR inside dark features like water vapor absorptions 
might assist with aspects of atmospheric correction like the estimation of aerosol scattering. Second, the combi-
nation of multiple segments into each linear emulator should reduce the impact of outlier solutions or surfaces 
on the local result. This beneficial smoothing may actually improve the performance of atmospheric correction 
relative to pixelwise inversions in some scenarios.

Incorporating emulator solutions into an atmospheric correction workflow is simple and straightforward, and 
it does not require any core changes to the inversion algorithm. Since the local emulators predict a directional 
reflectance quantity, any post-corrections such as BRDF inference can be applied equivalently to either pixelwise 
or emulated products. These properties make it a good candidate for operational use. However, as the approach 

Score
Basketball 

court Lawn
Station 

five

Number of pixels 3 12 16

Single pixel p-value >0.99 >0.99 >0.99

Emulator p-value >0.99 >0.99 >0.99

Single pixel versus in situ RMSE 0.012 0.010 0.002

Emulator versus in situ RMSE 0.011 0.010 0.002

Emulator versus Single pixel RMSE 0.0018 0.00086 0.0015

Note. The number of pixels used to generate the spectrum at each location is 
provided. RMSE, Root Mean Squared Error.

Table 2 
Discrepancies Between Remote Retrievals and in Situ Data

Figure 6. Bootstrap distributions for a and b coefficients from the lawn site, for the 877 nm reference channel.
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is applied to large areas, topography should also be considered in the design. 
Topography can create variability by changing the thickness of the atmos-
pheric column. Changes in oxygen absorption could reveal differences in 
elevation as small as 100 m, and water vapor could be even more sensitive. 
Applying a local linear emulator across variable topography would violate 
its assumption of a locally-constant atmosphere. Consequently, over variable 
terrain, differences in elevation should also be considered when defining the 
local “neighborhood” of a pixel. The EMIT mission will use a weighting in 
which vertical distance is weighted by a factor of 10 relative to horizontal 
distance for defining a spatial neighborhood. In other words, a 1 km spatial 
neighborhood would permit an elevation change of no greater than 100 m. 
The forthcoming deployment on the EMIT mission will provide much larger 
datasets spanning greater geographic scales to build experience with this 
strategy. Analysts seeking to implement this approach should also consider 
how systematic instrument errors could affect their results. Pushbroom imag-
ing spectrometers often experience slight spatial nonuniformities, manifest-
ing as changes in wavelength calibration or spectral response at different 
cross-track positions (Richter et al., 2010). AVIRIS-NG is unusually uniform 
among these instruments, with an average wavelength shift of less than 2% of 
the FWHM across the field of view (Chapman et al., 2019). Larger nonuni-

formities would mean that the atmospheric absorption lines observed by each channel would change at different 
locations in the image. The interpretation of transmittance, path radiance, and spherical albedo vectors would also 
change, violating assumptions of the emulator approach and impacting the model's performance. Naturally, such 
nonuniformities are also deleterious to pixelwise retrievals.

In aggregate, the significant speed advantages of the linear emulator approach will likely overcome these minor 
disadvantages for the short term, making it a favorable design choice for EMIT and other airborne campaigns. 
In the longer term, geostatistical solutions may be an even better option for modeling smooth atmospheres 
(Thompson et al., 2018). Techniques like Gaussian process priors could enable probabilistic modeling of surface 
and atmosphere together, allowing the surface to vary independently while enforcing local atmospheric smooth-
ness. Such models would provide a unified probabilistic account of the scene, grounding model parameters 
in the known physical lengthscales of atmospheric phenomena. Further techniques that leverage geospatial 
surface statistics may also prove useful in constraining the optimization algorithm, leading to faster processing 
times. The introduction of spatial regularization of the surface reflectance through natural image priors (Kim & 
Kwon, 2010), patch priors (Bouman et al., 2016; Zoran & Weiss, 2011), or sparsity priors (Candes et al., 2006; 
Donoho, 2006), relying on the surface's underlaying sparse geologic and vegetative attributes, may prove useful 
for introducing spatial constraints on the retrieval algorithm. Repeat overflights of the same area under global 
campaigns such as SBG will provide a wealth of data which can also be used to introduce spatial constraints. Data 
from multiple overflights could be used to construct location-dependent statistical constraints on the expected 
reflectance retrievals. Similarly, reconstructing a reflectance base map from multiple measurements of the same 
area would make the atmospheric and surface retrievals more well-posed by requiring an underlying surface 
consistency. These methods could be extended to include spatio-temporal statistical constraints as the surface 
and atmosphere are sampled repeatedly to account for expected seasonal variability. In this sense, the emulator 
approach presented here is simply a harbinger of future spatio-spectral retrievals that will become possible as 
computing speed and code optimization progresses.

Data Availability Statement
Code used for the forward and inverse modeling can be found at the ISOFIT repository (https://doi.org/10.5281/
zenodo.4614337). Data used in the experiments can be found at zenodo, in a repository that is available to 
reviewers and made fully public after acceptance for publication (https://doi.org/10.5281/zenodo.5719142). 
Louisiana data was acquired under the NASA Delta-X project, which is funded by the Science Mission Direc-
torate's Earth Science Division through the Earth Venture Suborbital-3 Program NNH17ZDA001N-EVS3 and 
available from the NASA-sponsored archives (https://doi.org/10.3334/ORNLDAAC/1988). Other AVIRIS-NG 

Figure 7. Root mean squared difference in reflectance as a function of the 
window size for the linear emulator, compared with the smallest size (25 
pixels). Remote and in situ discrepancies are shown by ’x’ symbols for the 
Basketball court (BC), Lawn, and Station five locations.

https://doi.org/10.5281/zenodo.4614337
https://doi.org/10.5281/zenodo.4614337
https://doi.org/10.5281/zenodo.5719142
https://doi.org/10.3334/ORNLDAAC/1988
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data was provided thanks to the NASA Earth Science Division, and is available from the instrument website 
(https://avirisng.jpl.nasa.gov).
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